Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(1): 539-550, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38134312

RESUMO

There is a current need to develop methods for the sensitive detection of peptide biomarkers in complex mixtures of molecules, such as biofluids, to enable early disease detection. Moreover, to our knowledge, there is currently no detection method capable of identifying the different conformations of a peptide biomarker differing by a single amino acid. Single-molecule nanopore sensing promises to provide this level of resolution. In order to be able to identify these differences in a biofluid such as serum, it is necessary to carefully characterize electrical parameters to obtain specific signatures of each biomarker population observed. We are interested here in a family of peptide biomarkers, kinins such as bradykinin and des-Arg9 bradykinin, that are involved in many disabling pathologies (allergy, asthma, angioedema, sepsis, or cancer). We show the proof of concept for direct identification of these biomarkers in serum at the single-molecule level using a protein nanopore. Each peptide exhibits two unique electrical signatures attributed to specific conformations in bulk. The same signatures are found in serum, allowing their discrimination and identification in a complex mixture such as biofluid. To extend the utility of our experimental results, we developed a principal component analysis approach to define the most relevant electrical parameters for their identification. Finally, we used semisupervised classification to assign each event type to a specific biomarker at physiological serum concentration. In the future, single-molecule scale analysis of peptide biomarkers using a powerful nanopore coupled with machine learning will facilitate the identification and quantification of other clinically relevant biomarkers from biofluids.


Assuntos
Bradicinina , Nanoporos , Peptídeos/química , Biomarcadores , Aprendizado de Máquina
2.
ACS Cent Sci ; 9(2): 228-238, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36844502

RESUMO

One of the most important health challenges is the early and ongoing detection of disease for prevention, as well as personalized treatment management. Development of new sensitive analytical point-of-care tests are, therefore, necessary for direct biomarker detection from biofluids as critical tools to address the healthcare needs of an aging global population. Coagulation disorders associated with stroke, heart attack, or cancer are defined by an increased level of the fibrinopeptide A (FPA) biomarker, among others. This biomarker exists in more than one form: it can be post-translationally modified with a phosphate and also cleaved to form shorter peptides. Current assays are long and have difficulties in discriminating between these derivatives; hence, this is an underutilized biomarker for routine clinical practice. We use nanopore sensing to identify FPA, the phosphorylated FPA, and two derivatives. Each of these peptides is characterized by unique electrical signals for both dwell time and blockade level. We also show that the phosphorylated form of FPA can adopt two different conformations, each of which have different values for each electrical parameter. We were able to use these parameters to discriminate these peptides from a mix, thereby opening the way for the potential development of new point-of-care tests.

3.
Chem Asian J ; 17(24): e202200888, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36321866

RESUMO

Controlled dielectric breakdown (CDB) is gaining popularity for fabricating solid-state nanopores in situ with size control in a simple, low-cost, and scalable way. This technique could be used for a broad type of applications in the field of nucleic acid analysis and even for protein studies. In this work, we studied the entry and transport of double-stranded DNAs using a solid-state nanopore fabricated by CDB as a function of applied voltage for two different DNA lengths. We showed that the blockade rate increases exponentially with voltage up to 120 mV. The energy barrier depends on the chain length, and the dwell times decrease with applied voltage up to 120 mV. Moreover, no matter the chain length, it is possible to differentiate two families of blockade amplitudes, high and low ones, due to DNA folding.


Assuntos
Nanoporos , DNA , Nanotecnologia/métodos
4.
Nano Res ; 15(11): 9906-9920, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35610982

RESUMO

With an increasing global population that is rapidly ageing, our society faces challenges that impact health, environment, and energy demand. With this ageing comes an accumulation of cellular changes that lead to the development of diseases and susceptibility to infections. This impacts not only the health system, but also the global economy. As the population increases, so does the demand for energy and the emission of pollutants, leading to a progressive degradation of our environment. This in turn impacts health through reduced access to arable land, clean water, and breathable air. New monitoring approaches to assist in environmental control and minimize the impact on health are urgently needed, leading to the development of new sensor technologies that are highly sensitive, rapid, and low-cost. Nanopore sensing is a new technology that helps to meet this purpose, with the potential to provide rapid point-of-care medical diagnosis, real-time on-site pollutant monitoring systems to manage environmental health, as well as integrated sensors to increase the efficiency and storage capacity of renewable energy sources. In this review we discuss how the powerful approach of nanopore based single-molecule, or particle, electrical promises to overcome existing and emerging societal challenges, providing new opportunities and tools for personalized medicine, localized environmental monitoring, and improved energy production and storage systems.

5.
Biosens Bioelectron ; 183: 113195, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33857755

RESUMO

Solid-state nanopores provide a powerful tool to electrically analyze nanoparticles and biomolecules at single-molecule resolution. These biosensors need to have a controlled surface to provide information about the analyte. Specific detection remains limited due to nonspecific interactions between the molecules and the nanopore. Here, a polymer surface modification to passivate the membrane is performed. This functionalization improves nanopore stability and ionic conduction. Moreover, one can control the nanopore diameter and the specific interactions between protein and pore surface. The effect of ionic strength and pH are probed. Which enables control of the electroosmotic driving force and dynamics. Furthermore, a study of polymer chain structure and permeability in the pore are carried out. The nanopore chip is integrated into a microfluidic device to ease its handling. Finally, a discussion of an ionic conductance model through a permeable crown along the nanopore surface is elucidated. The proof of concept is demonstrated by the capture of free streptavidin by the biotins grafted into the nanopore. In the future, this approach could be used for virus diagnostic, nanoparticle or biomarker sensing.


Assuntos
Técnicas Biossensoriais , Nanoporos , Dispositivos Lab-On-A-Chip , Nanotecnologia , Proteínas
6.
ACS Sens ; 4(3): 530-548, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30747518

RESUMO

The nanopore electrical approach is a breakthrough in single molecular level detection of particles as small as ions, and complex as biomolecules. This technique can be used for molecule analysis and characterization as well as for the understanding of confined medium dynamics in chemical or biological reactions. Altogether, the information obtained from these kinds of experiments will allow us to address challenges in a variety of biological fields. The sensing, design, and manufacture of nanopores is crucial to realize these objectives. For some time now, aerolysin, a pore forming toxin, and its mutants have shown high potential in real time analytical chemistry, size discrimination of neutral polymers, oligosaccharides, oligonucleotides and peptides at monomeric resolution, sequence identification, chemical modification on DNA, potential biomarkers detection, and protein folding analysis. This review focuses on the results obtained with aerolysin nanopores on the fields of chemistry, biology, physics, and biotechnology. We discuss and compare as well the results obtained with other protein channel sensors.


Assuntos
Toxinas Bacterianas , Nanoporos , Nanotecnologia/métodos , Proteínas Citotóxicas Formadoras de Poros , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo
7.
Eur Phys J E Soft Matter ; 41(10): 127, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30338424

RESUMO

Seeking new tools for the analysis of glycosaminoglycans, we have compared the translocation of anionic oligosaccharides from hyaluronic acid using aerolysin and [Formula: see text]-hemolysin nanopores. We show that pores of similar channel length and diameter lead to distinct translocation behavior of the same macromolecules, due to different structural properties of the nanopores. When passing from the vestibule side of the nanopores, short hyaluronic acid oligosaccharides could be detected during their translocation across an aerolysin nanopore but not across an [Formula: see text]-hemolysin nanopore. We were however able to detect longer oligosaccharide fragments, resulting from the in situ enzymatic depolymerization of hyaluronic acid polysaccharides, with both nanopores, meaning that short oligosaccharides were crossing the [Formula: see text]-hemolysin nanopore with a speed too high to be detected. The translocation speed was an order of magnitude higher across [Formula: see text]-hemolysin compared to aerolysin. These results show that the choice of a nanopore to be used for resistive pulse sensing experiments should not rely only on the diameter of the channel but also on other parameters such as the charge repartition within the pore lumen.


Assuntos
Toxinas Bacterianas/química , Técnicas Biossensoriais/métodos , Proteínas Hemolisinas/química , Ácido Hialurônico/análise , Ácido Hialurônico/química , Nanoporos , Proteínas Citotóxicas Formadoras de Poros/química , Polimerização
8.
ACS Sens ; 3(10): 2129-2137, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30284814

RESUMO

Solid-state nanopores have a huge potential in upcoming societal challenging applications in biotechnologies, environment, health, and energy. Nowadays, these sensors are often used within bulky fluidic devices that can cause cross-contaminations and risky nanopore chips manipulations, leading to a short experimental lifetime. We describe the easy, fast, and cheap innovative 3D-printer-helped protocol to manufacture a microfluidic device permitting the reversible integration of a silicon based chip containing a single nanopore. We show the relevance of the shape of the obtained channels thanks to finite elements simulations. We use this device to thoroughly investigate the ionic transport through the solid-state nanopore as a function of applied voltage, salt nature, and concentration. Furthermore, its reliability is proved through the characterization of a polymer-based model of protein-urea interactions on the nanometric scale thanks to a hairy nanopore.


Assuntos
Microfluídica/métodos , Nanoporos , Proteínas/química , Ureia/química , Transporte de Íons , Dispositivos Lab-On-A-Chip , Cloreto de Lítio/química , Cloreto de Potássio/química , Impressão Tridimensional , Conformação Proteica , Reciclagem , Compostos de Silício/química
9.
Eur Phys J E Soft Matter ; 41(9): 99, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30159758

RESUMO

Nanopores constitute devices for the sensing of nano-objects such as ions, polymer chains, proteins or nanoparticles. We describe what information we can extract from the current trace. We consider the entrance of polydisperse chains into the nanopore, which leads to a conductance drop. We describe the detection of these current blockades according to their shape. Finally, we explain how data analysis can be used to enhance our understanding of physical processes in confined media.

10.
Nanoscale ; 10(32): 15303-15316, 2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30069556

RESUMO

Biomimetic ion channels with different materials have been extensively designed to study the dynamics in a confined medium. These channels allow the development of several applications, such as ultra-fast sequencing and biomarker detection. When considering their synthesis, the use of cheap, non-cytotoxic and readily available materials is an increasing priority. Cyclodextrins, in supramolecular architectures, are widely utilized for pharmaceutical and biotechnological applications. Recent work has shown that short nanotubes (NTs) based on alpha-cyclodextrin (α-CD) assemble transient ion channels into membranes without cytotoxicity. In this study, we probe the influence of new cyclodextrin NT structural parameters and chemical modifications on channel formation, stability and electrical conductance. We report the successful synthesis of ß- and γ-cyclodextrin nanotubes (ß-CDNTs and γ-CDNTs), as evidenced by mass-spectrometry and high-resolution transmission electron microscopy. CDNTs were characterized by their length, diameter and number of CDs. Two hydrophobic groups, silylated or vinylated, were attached along the γ-CDNTs, improving the insertion time into the membrane. All NTs synthesized form spontaneous biomimetic ion channels. The hydrophobic NTs exhibit higher stability in membranes. Electrophysiological measurements show that ion transport is the main contribution of NT conductance and that the ion energy penalty for the entry into these NTs is similar to that of biological channels.

11.
Faraday Discuss ; 210(0): 41-54, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29974104

RESUMO

Biomimetic ion channels can be made to display the high sensitivity of natural protein nanopores and to develop new properties as a function of the material used. How to design the best future biomimetic channels? The main challenges are to control their sensitivity, as well as their syntheses, chemical modifications, insertion and lifetime in a lipid membrane. To address these challenges, we have recently designed short cyclodextrin nanotubes characterized by mass spectrometry and high-resolution transmission electron microscopy. They form non-permanent ion channels in lipid bilayers. Here we show how to improve the nanotube insertion in order to limit multiple insertions, how to stabilize biomimetic channels into the membrane, and how to understand the ion dynamics in confined medium scale.

12.
Eur Phys J E Soft Matter ; 41(5): 58, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29748865

RESUMO

We describe the behaviour of a polyelectrolyte in confined geometry. The transport of a polyelectrolyte, dextran sulfate, through a recombinant protein channel, aerolysin, inserted into a planar lipid bilayer is studied as a function of applied voltage and polyelectrolyte concentration and chain length. The aerolysin pore has a weak geometry asymmetry, a high number of charged residues and the polyelectrolyte is strongly negatively charged. The resulting current blockades were characterized by short and long dwelling times. Their frequency varies exponentially as a function of applied voltage and linearly as a function of polyelectrolyte concentration. The long blockade duration decreases exponentially when the electrical force increases. The ratio of the population of short events to the one of long events decreases when the applied voltage increases and displays an exponential variation. The long residence time increases with the polyelectrolyte chain length. We measure a reduction of the effective charge of the polyelectrolyte at the pore entry and inside the channel. For a fixed applied voltage, + / - 100 mV, at both sides of the protein pore entrance, the events frequency is similar as a function of dextran sulfate concentration. The mean blockade durations are independent of polyelectrolyte concentration and are similar for both entrances of the pore and remain constant as a function of the electrical force.

13.
ACS Appl Mater Interfaces ; 9(48): 41634-41640, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29144721

RESUMO

Electrical detection based on single nanopores is an efficient tool to detect biomolecules, particles and study their morphology. Nevertheless the surface of the solid-state membrane supporting the nanopore should be better controlled. Moreover, nanopore should be integrated within microfluidic architecture to facilitate control fluid exchanges. We built a reusable microfluidic system integrating a decorated membran, rendering the drain and refill of analytes and buffers easier. This process enhances strongly ionic conductance of the nanopore and its lifetime. We highlight the reliability of this device by detecting gold nanorods and spherical proteins.

14.
Nano Lett ; 15(11): 7748-54, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26471761

RESUMO

Biomimetic membrane channels offer a great potential for fundamental studies and applications. Here, we report the fabrication and characterization of short cyclodextrin nanotubes, their insertion into membranes, and cytotoxicity assay. Mass spectrometry and high-resolution transmission electron microscopy were used to confirm the synthesis pathway leading to the formation of short nanotubes and to describe their structural parameters in terms of length, diameter, and number of cyclodextrins. Our results show the control of the number of cyclodextrins threaded on the polyrotaxane leading to nanotube synthesis. Structural parameters obtained by electron microscopy are consistent with the distribution of the number of cyclodextrins evaluated by mass spectrometry from the initial polymer distribution. An electrophysiological study at single molecule level demonstrates the ion channel formation into lipid bilayers, and the energy penalty for the entry of ions into the confined nanotube. In the presence of nanotubes, the cell physiology is not altered.


Assuntos
Biomimética , Bicamadas Lipídicas/química , Nanotecnologia , Nanotubos/química , Ciclodextrinas/química , Canais Iônicos/química , Polímeros/química
15.
ACS Nano ; 9(6): 6443-9, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26028280

RESUMO

Electrophysiological studies of the interaction of polymers with pores formed by bacterial toxins (1) provide a window on single molecule interaction with proteins in real time, (2) report on the behavior of macromolecules in confinement, and (3) enable label-free single molecule sensing. Using pores formed by the staphylococcal toxin α-hemolysin (aHL), a particularly pertinent observation was that, under high salt conditions (3-4 M KCl), the current through the pore is blocked for periods of hundreds of microseconds to milliseconds by poly(ethylene glycol) (PEG) oligomers (degree of polymerization approximately 10-60). Notably, this block showed monomeric sensitivity on the degree of polymerization of individual oligomers, allowing the construction of size or mass spectra from the residual current values. Here, we show that the current through the pore formed by aerolysin (AeL) from Aeromonas hydrophila is also blocked by PEG but with drastic differences in the voltage-dependence of the interaction. In contrast to aHL, AeL strongly binds PEG at high transmembrane voltages. This fact, which is likely related to AeL's highly charged pore wall, allows discrimination of polymer sizes with particularly high resolution. Multiple applications are now conceivable with this pore to screen various nonionic or charged polymers.


Assuntos
Toxinas Bacterianas/antagonistas & inibidores , Proteínas Hemolisinas/antagonistas & inibidores , Nanoporos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Toxinas Bacterianas/química , Proteínas Hemolisinas/química , Tamanho da Partícula , Polietilenoglicóis/síntese química , Proteínas Citotóxicas Formadoras de Poros/antagonistas & inibidores , Proteínas Citotóxicas Formadoras de Poros/química , Relação Estrutura-Atividade , Propriedades de Superfície
16.
J Phys Chem Lett ; 5(24): 4362-7, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26273988

RESUMO

We demonstrate experimentally the existence of an electroosmotic flow (EOF) through the wild-type nanopore of α-hemolysin in a large range of applied voltages and salt concentrations for two different salts, LiCl and KCl. EOF controls the entry frequency and residence time of small neutral molecules (ß-cyclodextrins, ßCD) in the nanopore. The strength of EOF depends on the applied voltage, on the salt concentration, and, interestingly, on the nature of the cations in solution. In particular, EOF is stronger in the presence of LiCl than KCl. We interpret our results with a simple theoretical model that takes into account the pore selectivity and the solvation of ions. A stronger EOF in the presence of LiCl is found to originate essentially in a stronger anionic selectivity of the pore. Our work provides a new and easy way to control EOF in protein nanopores, without resorting to chemical modifications of the pore.

17.
Protein Pept Lett ; 21(3): 266-74, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24370253

RESUMO

In this mini-review we introduce and discuss a new method, at single molecule level, to study the protein folding and protein stability, with a nanopore coupled to an electric detection. Proteins unfolded or partially folded passing through one channel submitted to an electric field, in the presence of salt solution, induce different detectable blockades of ionic current. Their duration depends on protein conformation. For different studies proteins through nanopores, completely unfolded proteins induce only short current blockades. Their frequency increases as the concentration of denaturing agent or temperature increases, following a sigmoidal denaturation curve. The geometry or the net charge of the nanopores does not alter the unfolding transition, sigmoidal unfolding curve and half denaturing concentration or half temperature denaturation. A destabilized protein induces a shift of the unfolding curve towards the lower values of the denaturant agent compared to the wild type protein.Partially folded proteins exhibit very long blockades in nanopores. The blockade duration decreases when the concentration of denaturing agent increases. The variation of these blockades could be associated to a possible glassy behaviour.


Assuntos
Nanoporos , Desdobramento de Proteína , Proteínas/química , Animais , Biofísica/métodos , Humanos , Modelos Moleculares , Nanoporos/ultraestrutura , Conformação Proteica , Desnaturação Proteica , Estabilidade Proteica
18.
Anal Chem ; 85(18): 8488-92, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23992452

RESUMO

The enzymatic degradation of long polysaccharide chains is monitored by nanopore detection. It follows a Michaelis-Menten mechanism. We measure the corresponding kinetic constants at the single molecule level. The simulation results of the degradation process allowed one to account for the oligosaccharide size distribution detected by a nanopore.


Assuntos
Hialuronoglucosaminidase/farmacocinética , Nanoporos , Nanotecnologia/métodos , Polissacarídeos/farmacocinética , Animais , Bovinos , Cinética , Masculino , Peso Molecular
19.
ACS Chem Biol ; 7(12): 1935-49, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23145870

RESUMO

Proteins subjected to an electric field and forced to pass through a nanopore induce blockades of ionic current that depend on the protein and nanopore characteristics and interactions between them. Recent advances in the analysis of these blockades have highlighted a variety of phenomena that can be used to study protein translocation and protein folding, to probe single-molecule catalytic reactions in order to obtain kinetic and thermodynamic information, and to detect protein-antibody complexes, proteins with DNA and RNA aptamers, and protein-pore interactions. Nanopore design is now well controlled, allowing the development of future biotechnologies and medicine applications.


Assuntos
Nanoporos , Proteínas/análise , Biomimética , Dobramento de Proteína , Transporte Proteico
20.
ACS Nano ; 6(11): 9672-8, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23046010

RESUMO

Glycosaminoglycans are biologically active anionic carbohydrates that are among the most challenging biopolymers with regards to their structural analysis and functional assessment. The potential of newly introduced biosensors using protein nanopores that have been mainly described for nucleic acids and protein analysis to date, has been here applied to this polysaccharide-based third class of bioactive biopolymer. This nanopore approach has been harnessed in this study to analyze the hyaluronic acid glycosamiglycan and its depolymerization-derived oligosaccharides. The translocation of a glycosaminoglycan is reported using aerolysin protein nanopore. Nanopore translocation of hyaluronic acid oligosaccharides was evidenced by the direct detection of translocated molecules accumulated into the arrival compartment using high-resolution mass spectrometry. Anionic oligosaccharides of various polymerization degrees were discriminated through measurement of the dwelling time and translocation frequency. This molecular sizing capability of the protein nanopore device allowed the real-time recording of the enzymatic cleavage of hyaluronic acid polysaccharide. The time-resolved detection of enzymatically produced oligosaccharides was carried out to monitor the depolymerization enzyme reaction at the single-molecule level.


Assuntos
Toxinas Bacterianas/química , Técnicas Biossensoriais/instrumentação , Ácido Hialurônico/análise , Técnicas de Sonda Molecular/instrumentação , Nanoestruturas/química , Nanotecnologia/instrumentação , Proteínas Citotóxicas Formadoras de Poros/química , Ativação Enzimática , Desenho de Equipamento , Análise de Falha de Equipamento , Ácido Hialurônico/química , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...